Problem 5088. Let a, b be positive integers. Prove that

$$
\frac{\varphi(a b)}{\sqrt{\varphi^{2}\left(a^{2}\right)+\varphi^{2}\left(b^{2}\right)}} \leq \frac{\sqrt{2}}{2}
$$

where $\varphi(n)$ is Euler's totient function.
Proposed by Isabel Iriberri Díaz and José Luis Díaz-Barrero, Barcelona, Spain Solution by Ercole Suppa, Teramo, Italy

We will use the following well known result
Theorem. If n is a natural number then

$$
\begin{equation*}
\varphi(n)=\prod_{p \mid n}\left(1-\frac{1}{p}\right) \tag{1}
\end{equation*}
$$

where $\varphi(n)$ is Euler's totient function and $\prod_{p \mid n}\left(1-\frac{1}{p}\right)$ denotes the product of all numbers of the form $\left(1-\frac{1}{p}\right)$ with p taking as values the distinct prime divisors of n.

Coming back to our problem, let A, B be the sets of prime divisors of a, b respectively. Let us define the number α, β, γ in the following way

$$
\alpha=\prod_{p \in A-B}\left(1-\frac{1}{p}\right), \quad \beta=\prod_{p \in B-A}\left(1-\frac{1}{p}\right), \quad \gamma=\prod_{p \in A \cap B}\left(1-\frac{1}{p}\right)
$$

Now, by using (1) we have

$$
\begin{gather*}
\varphi(a)=a \alpha \gamma \quad, \quad \varphi(b)=b \beta \gamma \tag{2}\\
\varphi\left(a^{2}\right)=a^{2} \alpha \gamma \quad, \quad \varphi\left(b^{2}\right)=b^{2} \beta \gamma \quad, \quad \varphi(a b)=a b \alpha \beta \gamma \tag{3}
\end{gather*}
$$

According to (2) and (3), we get

$$
\begin{aligned}
\frac{\varphi(a b)}{\sqrt{\varphi^{2}\left(a^{2}\right)+\varphi^{2}\left(b^{2}\right)}} & =\frac{a b \alpha \beta \gamma}{\sqrt{a^{4} \alpha^{2} \gamma^{2}+b^{4} \beta^{2} \gamma^{2}}} \leq \frac{a b \alpha \beta \gamma}{\sqrt{a^{4} \alpha^{4} \gamma^{2}+b^{4} \beta^{4} \gamma^{2}}} \leq \\
& \leq \frac{a b \alpha \beta \gamma}{\sqrt{2 a^{2} b^{2} \alpha^{2} \beta^{2} \gamma^{2}}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

The latter majorization comes from the inequalities $\alpha, \beta \leq 1$ and

$$
\left(a^{2} \alpha^{2} \gamma-b^{2} \beta^{2} \gamma\right)^{2} \geq 0 \quad \Leftrightarrow \quad a^{4} \alpha^{4} \gamma^{2}+b^{4} \beta^{4} \gamma^{2} \geq 2 a^{2} b^{2} \alpha^{2} \beta^{2} \gamma^{2}
$$

